16th Annual Innovative Molecular Analysis Technologies (IMAT) Principal Investigators' (PI) Meeting

November 12-13, 2015

Porter Neuroscience Conference Center
NIH Campus
Bethesda, Maryland

U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES
National Institutes of Health
Welcome to the 16th Annual Principal Investigators’ (PI) Meeting for the NCI Innovative Molecular Analysis Technologies (IMAT) program. As many of you already know, this annual meeting is organized to address two important aims of the IMAT program: (1) for supported investigators to provide NCI program staff a chance to interact directly with PIs and receive an update on progress to date for supported research and (2) to provide an opportunity for interactions and exchange of ideas among meeting participants. The latter aim serves as a critical opportunity to spark new project collaborations for exploring technology gaps and opportunities, to further improve supported technology platforms or to potentially launch the development of entirely new technologies. The interactions are an important opportunity for receiving critical feedback and guidance from a broad community, as well as for fostering dissemination of the exciting technologies emerging from IMAT-supported research.

As usual, there are more exciting active research projects in the IMAT portfolio than we could possibly allow sufficient speaking time for, so we will continue our practice of having short “Poster Highlight” talks for those investigators presenting particularly interesting progress relevant to different sessions. As these presentations are short, you are encouraged to seek additional details from the poster during one of the two poster sessions or during the breaks.

An important issue in general from the perspective of any investor is the need to engage end-users early and often, and so the meeting includes various mechanisms for facilitating that communication. Beyond your fellow IMAT grantees, researchers from NCI’s intramural laboratories of the Center for Cancer Research will be in attendance and asking questions throughout the meeting (including during the poster sessions). You are very much encouraged to engage them to understand their interests and needs, as they represent that important end-user community. Many of the IMAT-supported technologies are multidisciplinary endeavors, and as such your fellow supported investigators also represent important end-user perspectives that might be engaged. The relatively long breaks between sessions are meant to allow for such interaction and dialog, as well as gatherings outside the official agenda. Also note that NCI program officers representing a broad array of actively supported research areas will be in attendance to answer any questions associated with active funding opportunities (especially those found in the Resource Listings section of this book). In addition to the agenda and presentation abstracts, a list of resources and funding opportunities we thought might be of interest to participants are included toward the back of this program book.

On behalf of the NCI program staff and everyone involved in the planning for this meeting, I thank you for your participation, your interest, and the important work you all do to assist in our collective mission against cancer. I look forward to an exciting and productive meeting.

Sincerely,

Tony Dickherber, Ph.D.
Program Director
Center for Strategic Scientific Initiatives
Office of the Director
National Cancer Institute
Thursday, November 12

8:15 a.m. - 8:30 a.m. Welcome
Tony Dickherber, Ph.D.
Director, IMAT Program
Center for Strategic Scientific Initiatives
National Cancer Institute, NIH

8:30 a.m. - 10:00 a.m. Session 1: Cancer Imaging

8:30 a.m. - 8:50 a.m. Photonic Crystal Enhanced Fluorescence: Development of Sensor Structures and Detection Instrumentation for Early Cancer Biomarker Detection
Brian T. Cunningham, Ph.D., M.S.
University of Illinois at Urbana-Champaign

8:50 a.m. - 9:10 a.m. Kinase Binding Fluorescent Probes for Assaying Cellular Receptor Populations
James N. Wilson, Ph.D.
University of Miami, Coral Gables

9:10 a.m. - 9:30 a.m. Highly Multiplexed Ion-Beam Tissue RNA In Situ Imaging With Sub-Micron Resolution
Richard M. Levenson, M.D., FCAP
University of California, Davis

9:30 a.m. - 9:50 a.m. Compact Microfluidic PET Tracer Concentrator for Preclinical Imaging and In Vitro Studies
R. Michael van Dam, Ph.D., M.S.
University of California, Los Angeles

9:50 a.m. - 10:00 a.m. Session Discussion

10:00 a.m. - 10:20 a.m. BREAK
10:20 a.m. - 12:10 p.m. Session 2: Panel Discussion on Liquid Biopsies: The CTC Perspective
Moderator: Lynn Sorbara, Ph.D.
Division of Cancer Prevention
National Cancer Institute, NIH

10:20 a.m. - 10:30 a.m. Introduction and Overview
Lynn Sorbara, Ph.D.

10:30 a.m. - 11:20 a.m. Highlights of Relevant Projects Supported by IMAT
Rafael V. Davalos, Ph.D.
Virginia Polytechnic Institute and State University
Dino Di Carlo, Ph.D.
University of California, Los Angeles
Dmitri Simberg, Ph.D.
University of Colorado
Peter Kuhn, Ph.D.
University of Southern California
Hsian-Rong Tseng, Ph.D.
University of California, Los Angeles
Stefanie S. Jeffrey, M.D., M.A., FACS
Stanford University
Lydia L. Sohn, Ph.D.
University of California, Berkeley
Youli Zu, M.D., Ph.D.
Houston Methodist Research Institute

11:20 a.m. - 12:10 p.m. Panel Discussion

12:10 p.m. - 1:20 p.m. LUNCH (on your own) and Discussion Groups

1:20 p.m. - 2:30 p.m. Session 3: Biomarker Discovery Tools
Session Chair: Christos Patriotis, Ph.D.
Division of Cancer Prevention
National Cancer Institute, NIH

1:20 p.m. - 1:40 p.m. Controlled Premature Termination of Translation
Luca Cartegni, Ph.D.
Rutgers University

1:40 p.m. - 2:00 p.m. Protein Painting Reveals Hidden “Hot Spots” of Protein-Protein Interaction
Lance Liotta, M.D., Ph.D.
George Mason University
2:00 p.m. - 2:20 p.m.
Poster Highlights

New Reagents for Tracking Protein Oxidation in Cells by MS and Imaging Methods
Cristina M. Furdui, Ph.D., M.S.
Wake Forest School of Medicine

Kinase Profiling With Quantitative Chemoproteomics
Dustin J. Maly, Ph.D.
University of Washington

2:20 p.m. - 2:30 p.m.
Session Discussion

2:30 p.m. - 4:00 p.m.
Session 4: Cancer Detection and Diagnosis
Session Chair: Rao L. Divi, Ph.D., M.S.
Division of Cancer Control and Population Sciences
National Cancer Institute, NIH

2:30 p.m. - 2:50 p.m.
Genome-Wide Location Analysis of DNA Adducts in Whole Cells
Olivier Harismendy, Ph.D.
University of California, San Diego

2:50 p.m. - 3:10 p.m.
Single Molecule Targeted Sequencing for Detecting Cancer Genetic Aberrations and Clonal Delineation
Hanlee P. Ji, M.D.
Stanford University

3:10 p.m. - 3:30 p.m.
Sensitive and Integrated Microfluidic ChIP Assays for Studying Transcriptional Regulation in Cancer Development Based on Primary Cells
Chang Lu, Ph.D., M.S.
Virginia Polytechnic Institute and State University

3:30 p.m. - 3:50 p.m.
Poster Highlights

Single-Cell Sequencing Reveals Distinct Genomic Profiles in Epithelial and Mesenchymal Tumor Cells
Jessica Sang, Ph.D.
Harvard University

Acute Myeloid Leukemia: MRD Analysis Using Modular Microfluidics and Microflow Cytometry
Steven A. Soper, Ph.D.
The University of North Carolina at Chapel Hill

3:50 p.m. - 4:00 p.m.
Session Discussion

4:00 p.m. - 5:30 p.m.
POSTER SESSION I
5:30 p.m. - 7:00 p.m. **Session 5: Drug Development and Improved Treatment Technologies**
Session Chair: Brian Sorg, Ph.D., M.S.
Division of Cancer Treatment and Diagnosis
National Cancer Institute, NIH

5:30 p.m. - 5:50 p.m. *In Vivo Metal-Free Cycloaddition Chemistry-Driven Pretargeted Cancer Radiotherapy*
Thomas Quinn, Ph.D.
University of Missouri

5:50 p.m. - 6:10 p.m. *Optimization of Multivalent Ligands by Super-Resolution Microscopy to Treat Cancer*
John C. Williams, Ph.D., and Tijana Talisman, Ph.D.
Beckman Research Institute of City of Hope

6:10 p.m. - 6:30 p.m. *A Novel Theranostic Platform for Targeted Cancer Therapy and Treatment Monitoring*
Mingfeng Bai, Ph.D.
University of Pittsburgh

6:30 p.m. - 6:50 p.m. *A Novel High-Throughput Tumor Spheroid Microtechnology*
Hossein Tavana, Ph.D.
The University of Akron

6:50 p.m. - 7:00 p.m. **Session Discussion**

7:00 p.m. **Adjournment for the Day**
Friday, November 13

8:20 a.m. - 8:30 a.m.
Welcome
Tony Dickherber, Ph.D.

8:30 a.m. - 9:40 a.m.
Session 6: Novel Biosensors
Session Chair: J. Randy Knowlton, Ph.D.
Division of Cancer Biology
National Cancer Institute, NIH

8:30 a.m. - 8:50 a.m.
Characterizing Gene Regulation With Single Molecule Sensitive Probes
Chiara Zurla, Ph.D.
Georgia Institute of Technology

8:50 a.m. - 9:10 a.m.
Nanoscale Tools for Functional Studies of Cancer-Relevant Chromatin Modifications
Carlos E. Castro, Ph.D., M.S.
The Ohio State University

9:10 a.m. - 9:30 a.m.
Poster Highlights

Monitoring Phosphorylation by SERS
Joseph M.K. Irudayaraj, Ph.D., M.S.
Purdue University

Charge Sensitive Optical Detection for High-Throughput Study of Small Molecules
Nongjian Tao, Ph.D.
Arizona State University

9:30 a.m. - 9:40 a.m.
Session Discussion

9:40 a.m. - 10:00 a.m.
BREAK

10:00 a.m. - 11:40 a.m.
Session 7: Cancer Modeling
Session Chair: Nastaran Kuhn, Ph.D.
Division of Cancer Biology
National Cancer Institute, NIH

10:00 a.m. - 10:20 a.m.
Conditionally Reprogrammed Cells as a Novel Tool for Biobanking
Richard Schlegel, M.D., Ph.D.
Georgetown University Medical Center

10:20 a.m. - 10:40 a.m.
Establishment, Maintenance, and Characterization of Human Colonic Adenomas and Adenocarcinomas in Enteroid Culture
James Varani, Ph.D., M.S.
University of Michigan

10:40 a.m. - 11:00 a.m.
Microfluidic 3D Model of Cancer Metastasis
Joseph L. Charest, Ph.D., M.S.
Charles Stark Draper Laboratory
Massachusetts Institute of Technology
11:00 a.m. - 11:30 a.m.

Poster Highlights

Microfluidic Approach for the Development of a 3D Bone Marrow Microenvironment Model to Test Personalized Multiple Myeloma Treatments

Woo Lee, Ph.D., and Jenny Zilberberg, Ph.D.

Stevens Institute of Technology and Hackensack University Medical Center

Next-Generation Mouse Gene-Targeting Technology to Model Tumorigenesis

Ronald Conlon, Ph.D., M.S.

Case Western Reserve University

Molecular Analysis of Physical Microenvironmental Control of Tumor Cell Invasion

Sanjay Kumar, M.D., Ph.D.

University of California, Berkeley

11:30 a.m. - 11:40 a.m.

Session Discussion

11:40 a.m. - 1:20 p.m.

LUNCH (on your own) and POSTER SESSION II

1:20 p.m. - 2:50 p.m.

Session 8: Improving Sample Preparation and Preservation

Session Chair: Lokesh Agrawal, Ph.D., M.S.

Division of Cancer Treatment and Diagnosis

National Cancer Institute, NIH

1:20 p.m. - 1:40 p.m.

Isothermal Vitrification Methodology Development for Non-Cryogenic Storage of Archival Human Sera Samples

Alptekin Aksan, Ph.D.

University of Minnesota

1:40 p.m. - 2:00 p.m.

Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation and Extraction of Chromatin From FFPE Tissue

Paul A. Dayton, Ph.D.

The University of North Carolina at Chapel Hill

2:00 p.m. - 2:20 p.m.

Enabling Highly Effective Sample Processing via Temperature-Responsive Reagent Systems

James Lai, Ph.D.

University of Washington

2:20 p.m. - 2:40 p.m.

Advanced Development of Immuno-MRM Technology to Analyze Archived Cancer Tissues

Jacob Kennedy, M.Sc.

Fred Hutchinson Cancer Research Center

2:40 p.m. - 2:50 p.m.

Session Discussion

2:50 p.m. - 3:00 p.m.

Meeting Wrap-up and Adjournment

Tony Dickherber, Ph.D.

Director, IMAT Program

Center for Strategic Scientific Initiatives

National Cancer Institute, NIH
<table>
<thead>
<tr>
<th>Speaker(s)</th>
<th>Abstract Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brian T. Cunningham</td>
<td>Photonic Crystal Enhanced Fluorescence: Development of Sensor Structures and Detection Instrumentation for Early Cancer Biomarker Detection</td>
<td>10</td>
</tr>
<tr>
<td>James N. Wilson</td>
<td>Kinase Binding Fluorescent Probes for Assaying Cellular Receptor Populations</td>
<td>12</td>
</tr>
<tr>
<td>Richard M. Levenson</td>
<td>Highly Multiplexed Ion-Beam Tissue RNA In Situ Imaging With Sub-Micron Resolution</td>
<td>13</td>
</tr>
<tr>
<td>R. Michael Van Dam</td>
<td>Compact Microfluidic PET Tracer Concentrator for Preclinical Imaging and In Vitro Studies</td>
<td>14</td>
</tr>
<tr>
<td>Luca Cartegni</td>
<td>Controlled Premature Termination of Translation</td>
<td>16</td>
</tr>
<tr>
<td>Lance A. Liotta</td>
<td>Protein Painting Reveals Hidden “Hot Spots” of Protein-Protein Interaction</td>
<td>17</td>
</tr>
<tr>
<td>Olivier Harismendy</td>
<td>Genome-Wide Location Analysis of DNA Adduct in Whole Cells</td>
<td>19</td>
</tr>
<tr>
<td>Hanlee P. Ji</td>
<td>Single Molecule Targeted Sequencing for Detecting Cancer Genetic Aberrations and Clonal Delineation</td>
<td>20</td>
</tr>
<tr>
<td>Chang Lu</td>
<td>Sensitive and Integrated Microfluidic ChIP Assays for Studying Transcriptional Regulation in Cancer Development Based on Primary Cells</td>
<td>21</td>
</tr>
<tr>
<td>Thomas P. Quinn</td>
<td>In Vivo Metal-Free Cycloaddition Chemistry Driven Pretargeted Cancer Radiotherapy</td>
<td>22</td>
</tr>
<tr>
<td>John Williams Tijana Talisman</td>
<td>Optimization of Multivalent Ligands by Super-Resolution Microscopy to Treat Cancer</td>
<td>23</td>
</tr>
<tr>
<td>Mingfeng Bai</td>
<td>A Novel Theranostic Platform for Targeted Cancer Therapy and Treatment Monitoring</td>
<td>24</td>
</tr>
<tr>
<td>Hossein Tavana</td>
<td>A Novel High-Throughput Tumor Spheroid Microtechnology</td>
<td>25</td>
</tr>
<tr>
<td>Chiara Zurla</td>
<td>Characterizing Gene Regulation With Single Molecule Sensitive Probes</td>
<td>26</td>
</tr>
<tr>
<td>Carlos E. Castro</td>
<td>Nanoscale Tools for Functional Studies of Cancer-Relevant Chromatin Modifications</td>
<td>28</td>
</tr>
<tr>
<td>Richard Schlegel</td>
<td>Conditionally Reprogrammed Cells as a Novel Tool for Biobanking</td>
<td>29</td>
</tr>
<tr>
<td>James Varani</td>
<td>Establishment, Maintenance, and Characterization of Human Colonic Adenomas and Adenocarcinomas in Enteroid Culture</td>
<td>30</td>
</tr>
<tr>
<td>Joseph L. Charest</td>
<td>Microfluidic 3D Model of Cancer Metastasis</td>
<td>31</td>
</tr>
<tr>
<td>Alptekin Aksan</td>
<td>Isothermal Vitrification Methodology Development for Non-Cryogenic Storage of Archival Human Sera Samples</td>
<td>32</td>
</tr>
<tr>
<td>Paul A. Dayton</td>
<td>Cavitation Enhancing Nanodroplets Mediate Efficient DNA Fragmentation and Extraction of Chromatin From FFPE Tissue</td>
<td>33</td>
</tr>
<tr>
<td>James Lai</td>
<td>Enabling Highly Effective Sample Processing via Temperature-Responsive Reagent Systems</td>
<td>34</td>
</tr>
<tr>
<td>Jacob Kennedy</td>
<td>Advanced Development of Immuno-MRM Technology to Analyze Archived Cancer Tissues</td>
<td>36</td>
</tr>
</tbody>
</table>

NOTE: Any underlining in the abstracts has been provided by the submitting author.
Poster Abstracts

*denotes poster highlighted during meeting session

Posters are arranged by abstract title.

<table>
<thead>
<tr>
<th>Poster Number</th>
<th>Poster Author(s)</th>
<th>Abstract Title</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Michael W. Schmitt Edward J. Fox Jesse J. Salk Kate Bayliess Lawrence A. Loeb</td>
<td>Accurate Detection of Subclonal Mutations in Human Cancers by Duplex Sequencing</td>
<td>53</td>
</tr>
<tr>
<td>2*</td>
<td>Steven A. Soper Paul M. Armistead</td>
<td>Acute Myeloid Leukemia: MRD Analysis Using Modular Microfluidics and Microflow Cytometry</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>Stephen J Salipante Jay Shendure</td>
<td>Advanced Development and Validation of Targeted Molecular Counting Methods for Precise and Ultrasensitive Quantitation of Low Prevalence Somatic Mutations</td>
<td>58</td>
</tr>
<tr>
<td>4</td>
<td>Samir Mitragotri Kenneth Tsai</td>
<td>Assessing the Risk of UV-Induced Skin Cancer by Noninvasive Epidermal Sampling</td>
<td>59</td>
</tr>
<tr>
<td>5</td>
<td>Oliver Jonas Michael J Cima</td>
<td>Bringing the Laboratory Into the Patient: A Novel Technology to Perform Rapid High-Throughput Drug Sensitivity Testing Inside Tumors</td>
<td>60</td>
</tr>
<tr>
<td>6</td>
<td>Joshua C. Snyder Veronica Lubkov Lauren K. Rochelle Caroline Ray Zachary Hartman Cheryl Bock Gary Kucera H. Kim Lyerly Larry S. Barak Marc G. Caron</td>
<td>A Cancer Rainbow Mouse for Simultaneous Assessment of Multiple Oncogenes</td>
<td>62</td>
</tr>
<tr>
<td>7</td>
<td>Robert J. Turesky</td>
<td>Carcinogen DNA Adduct Biomarkers in Formalin Fixed Tissues</td>
<td>63</td>
</tr>
<tr>
<td>8*</td>
<td>Nongjian Tao Shaopeng Wang</td>
<td>Charge Sensitive Optical Detection for High-Throughput Study of Small Molecules</td>
<td>64</td>
</tr>
<tr>
<td>9</td>
<td>Hsin-Chih “Tim” Yeh Andrew Dunn Mien-Chie Hung</td>
<td>Deep and High-Resolution Three-Dimensional Tracking of Single Particles Using Nonlinear and Multiplexed Illumination</td>
<td>65</td>
</tr>
<tr>
<td>10</td>
<td>Andrew Wang</td>
<td>Development of 3D Organ-Specific Models of Colorectal Cancer Metastasis</td>
<td>66</td>
</tr>
<tr>
<td>11</td>
<td>Heng Zhu Prashant Desai</td>
<td>Development of a Virion Display (VirD) Array to Profile Human BPCR Interactions</td>
<td>67</td>
</tr>
<tr>
<td>12</td>
<td>Deepanwita Sengupta Stephanie D. Byrum Nathan L. Avaritt Lauren Davis Lisa M. Orr Samuel G. Mackintosh Sara C. Shalin Alan J. Tackett</td>
<td>Development of MassSQUIRM to Quantitatively Measure Lysine Methylation</td>
<td>68</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Poster Author(s)</td>
<td>Abstract Title</td>
<td>Page Number</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>13</td>
<td>Tza-Huei (Jeff) Wang</td>
<td>Digital Detection of Tumor-Derived Circulating Methylated DNA</td>
<td>69</td>
</tr>
<tr>
<td>14</td>
<td>Tingrui Pan</td>
<td>Digital One-Disc-One-Compound Array for High-Throughput Discovery of Cancer-Targeting Agents</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>Richard R. Drake</td>
<td>Direct Tumor Glycan Profiling in Tissue Microarrays</td>
<td>71</td>
</tr>
<tr>
<td>16</td>
<td>Ted Pham</td>
<td>An Electronic Assay of Cell Death</td>
<td>72</td>
</tr>
<tr>
<td>17</td>
<td>Warren R. Zipfel</td>
<td>A Fast Interference Based Super-Resolution Microscope for Cancer Mechanobiology</td>
<td>74</td>
</tr>
<tr>
<td>18</td>
<td>Matthew Levy</td>
<td>Glycan-Anchored Scaffold Libraries for Targeting Carbohydrate-Binding Proteins</td>
<td>75</td>
</tr>
<tr>
<td>19</td>
<td>Matthew J. Rodesch</td>
<td>High Density Peptide Arrays for Cancer-Related Post-Translational Modifications</td>
<td>76</td>
</tr>
<tr>
<td>20</td>
<td>Anthony John Iafrate</td>
<td>Highly Multiplexed FISH for In Situ Genomics</td>
<td>77</td>
</tr>
<tr>
<td>21</td>
<td>Garry P. Nolan</td>
<td>Highly Multiplexed Ion-Beam Tissue Molecular Imaging With Sub-Micron Resolution</td>
<td>78</td>
</tr>
<tr>
<td>22</td>
<td>Hidetaka Tanno</td>
<td>High-Throughput Single Cell Transcriptome Analysis</td>
<td>79</td>
</tr>
<tr>
<td>23</td>
<td>Paul Tempst</td>
<td>Immobilized Protease Activity Tests (IPATs) for Development of Functional Cancer Biomarkers</td>
<td>80</td>
</tr>
<tr>
<td>24</td>
<td>Christine E. Brown</td>
<td>In Situ Imaging of CAR T Cells</td>
<td>81</td>
</tr>
<tr>
<td>25</td>
<td>Chun Shao</td>
<td>Integrated Glycomics and Proteomics of Human Astrocytoma Tissue Microarrays</td>
<td>82</td>
</tr>
<tr>
<td>26</td>
<td>Yong Zeng</td>
<td>Integrated Lab-on-a-Chip Platforms for Molecular Profiling of Circulating Exosomes in Cancer</td>
<td>83</td>
</tr>
<tr>
<td>27</td>
<td>Erin F. Simonds</td>
<td>Integrating Mass Cytometric and Transcriptomic Profiles of Solid Tumors</td>
<td>84</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Poster Author(s)</td>
<td>Abstract Title</td>
<td>Page Number</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------</td>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>28</td>
<td>Kirk Hansen, Valerie Marie Weaver</td>
<td>Investigating the Fibrotic Phenotype of Pancreatic Ductal Adenocarcinoma</td>
<td>85</td>
</tr>
<tr>
<td>29</td>
<td>Rafael Vidal Davalos, Scott D. Cramer</td>
<td>Isolation of Tumor Initiating Cells (TICs) Using Contactless Dielectrophoresis</td>
<td>86</td>
</tr>
<tr>
<td>30*</td>
<td>Shao-En Ong, Dustin J. Maly</td>
<td>Kinase Profiling With Quantitative Chemoproteomics</td>
<td>87</td>
</tr>
<tr>
<td>31</td>
<td>William H. Robinson</td>
<td>Large Scale Sequencing of Antibody Repertoires in Lung Adenocarcinoma</td>
<td>88</td>
</tr>
<tr>
<td>32</td>
<td>Rong Fan, Patrick Doyle</td>
<td>Measurement of microRNAs Biomarkers at the Single Cell Level</td>
<td>89</td>
</tr>
<tr>
<td>34</td>
<td>Ryan Bailey, Mark D. Johnson</td>
<td>Meso-plex miRNA and Protein Profiling for Cancer Diagnostics Using Chip-Integrated Silicon Photonics</td>
<td>91</td>
</tr>
<tr>
<td>35*</td>
<td>Woo Y. Lee, Jenny Zilberberg</td>
<td>Microfluidic Approach for the Development of a 3D Bone Marrow Microenvironment Model to Test Personalized Multiple Myeloma Treatments</td>
<td>93</td>
</tr>
<tr>
<td>36</td>
<td>David Aaron Issadore</td>
<td>A Micro Hall Chip for Circulating Microvesicle-Based Cancer Monitoring</td>
<td>95</td>
</tr>
<tr>
<td>37</td>
<td>Sam Bettis, Richard Jones, Alex Langerman, Kevin Roggin, Kevin White</td>
<td>Microwestern Array Methodology for Assessment of Preanalytical Variability in Biospecimens</td>
<td>96</td>
</tr>
<tr>
<td>38*</td>
<td>Sanjay Kumar, Amy Herr</td>
<td>Molecular Analysis of Physical Microenvironmental Control of Tumor Cell Invasion</td>
<td>97</td>
</tr>
<tr>
<td>39</td>
<td>Adam Roger Hall</td>
<td>Molecular Detection of DNA Hydroxymethylation for Cancer Screening</td>
<td>99</td>
</tr>
<tr>
<td>40*</td>
<td>Wen Ren, Joseph Irudayaraj</td>
<td>Monitoring Phosphorylation by SERS</td>
<td>100</td>
</tr>
<tr>
<td>41</td>
<td>Tzu-Yi Yang, Laurie L. Parker</td>
<td>Multiplexed Kinase Biosensor Technology to Detect Leukemia Signaling With Mass Spectrometry</td>
<td>101</td>
</tr>
<tr>
<td>42</td>
<td>Ronnie Das, Eric J. Seibel</td>
<td>Needle Biopsy Preservation and Preparation for Rapid 3D Pathology of Pancreas</td>
<td>102</td>
</tr>
<tr>
<td>43*</td>
<td>Cristina M. Furdui, Leslie B. Poole, S. Bruce King</td>
<td>New Reagents for Tracking Protein Oxidation in Cells by MS and Imaging Methods</td>
<td>104</td>
</tr>
<tr>
<td>44</td>
<td>Karol Bomsztyk</td>
<td>Next Generation Technology to Detect Epigenetic Alterations in Human Tissues</td>
<td>105</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Poster Author(s)</td>
<td>Abstract Title</td>
<td>Page Number</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>45*</td>
<td>Ronald Conlon, Xiujing Feng, Weihong Jiang, Zhenghe Wang</td>
<td>Next-Generation Mouse Gene-Targeting Technology to Model Tumorigenesis</td>
<td>107</td>
</tr>
<tr>
<td>46</td>
<td>Xiaowei Chen</td>
<td>A Novel Allele-Specific RNA-ISH for Differential Allele-Specific Expression</td>
<td>108</td>
</tr>
<tr>
<td>48</td>
<td>Thomas W. Hanigan, Jayaprakash Neerasa, Irida Kastrati, Jonna Frasor, Pavel A. Petukhov</td>
<td>Photoreactive Histone Deacetylase Probes for Chromatin Immunoprecipitation in Cancer</td>
<td>110</td>
</tr>
<tr>
<td>49</td>
<td>Konstantinos Petritis, Victoria David, Kristine Tsantilas, Matthew Rosenow, Lizzi Neylon, David Carpentieri, Patrick Pirrotte</td>
<td>Preservation of Dried Plasma Spots for Downstream Proteomic Applications</td>
<td>112</td>
</tr>
<tr>
<td>50</td>
<td>Chien-Sheng Liao, Pu Wang, Gregory Eakins, Ji-Xin Cheng</td>
<td>Quantitative Spectroscopic Imaging of Cancer Metabolites in Live Cells and Intact Tissues</td>
<td>113</td>
</tr>
<tr>
<td>51</td>
<td>Margaret B. Penno</td>
<td>Salivary Doxorubicin Stabilization and Monitoring in Pediatric CancerTags: Saliva Stabilization for Doxorubicin and "omics" Analysis in Children</td>
<td>114</td>
</tr>
<tr>
<td>52</td>
<td>Brian D. Brown, Ravi Sachidanandam</td>
<td>Sensor-seq: A Genome-Wide Biological Measure of microRNA Activity</td>
<td>115</td>
</tr>
<tr>
<td>53</td>
<td>Parijat Bhatnagar, Kazuhiro Oka, Concepcion Diaz-Arrastia</td>
<td>A Sensor T Lymphocyte for Robust Immunoengineering</td>
<td>116</td>
</tr>
<tr>
<td>54</td>
<td>Scott Manalis, David Weinstock</td>
<td>Single Cell Growth Assay for Residual Cells in Acute Lymphoblastic Leukemia</td>
<td>118</td>
</tr>
<tr>
<td>56</td>
<td>Alfredo Andres Celedon</td>
<td>Single Molecule Microarrays for the Detection of Mutant DNA in Body Fluids</td>
<td>120</td>
</tr>
<tr>
<td>Poster Number</td>
<td>Poster Author(s)</td>
<td>Abstract Title</td>
<td>Page Number</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>57</td>
<td>Michael MacCoss Jarrett Egertson Sonia Ting Han-Yin Yang Richard Johnson Brendan MacLean</td>
<td>Systematic and Comprehensive Sampling of Peptides in Mixtures by Tandem Mass Spectrometry</td>
<td>121</td>
</tr>
<tr>
<td>58</td>
<td>Daniel T. Chiu</td>
<td>Ultrabright Probes With Narrow Emission for Molecular and Cellular Analysis of Cancer</td>
<td>122</td>
</tr>
<tr>
<td>59</td>
<td>Mark J. Federspiel</td>
<td>Validating Technology to Optimize Antibody Affinity for Targeting Therapeutics</td>
<td>123</td>
</tr>
<tr>
<td>60</td>
<td>Chad Borges</td>
<td>Validation and Advanced Development of Glycan Node Analysis in Lung Cancer Research</td>
<td>124</td>
</tr>
<tr>
<td>61</td>
<td>Virginia Espina Claudius Mueller Lance A. Liotta</td>
<td>Validation of a Novel One Step Tissue Fixative That Preserves Phosphoproteins and Histomorphology</td>
<td>125</td>
</tr>
<tr>
<td>62</td>
<td>Alessandra Luchini Virginia Espina Lance A. Liotta</td>
<td>Validation of Nanotrap Nanotechnology for One Step Capture and Preservation of Labile Low Abundance Body Fluid Biomarkers</td>
<td>127</td>
</tr>
</tbody>
</table>

NOTE: Any underlining in the abstracts has been provided by the submitting author.